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General rules: 

1. To get credit for laboratory classes in the ‘Physics’ module, the student must obtain passing 
grade for at least 9 out of 10 experiments. 

2. An experiment that has been missed will be rated as zero added in the calculation of the 
grade average.  

3. Performance of an experiment consists of:    
Theoretical preparation to an experiment to be performed on a given day. (‘A Guide to 

Experiments at  Basic Physics Laboratory’) 

a)   …’ and a recommended handbook Physics by Douglas C. Giancoli) – oral or written 
introductory test. 

b)   Making measurements and writing the results in a protocol – admission to carry out 
experiments depends on the assessment of theoretical preparation.  

c)   Analysis of the measurement results in a paper protocol in accordance with                
‘A Guide…’ and lecturers recommendations.  

The analysis should be handed over to the instructor during the same class.  

It is necessary to obtain a positive grade for each of the aforementioned points to 
receive a credit for an experiment.  

Students are obliged to come to classes on time.  Those who will show up 15 minutes 
after the commencement of a class will not be allowed in the Laboratory. 

 

Health and safety requirements in the Basic Physics Laboratory: 

1.   You may enter the Laboratory only together with the instructor / teacher/ and after 
collecting appropriate apparatus (as stated in ‘A Guide …). 

2.   Electrical devices can be connected to the mains only in the presence of the instructor. 
3.   A person who damaged or destroyed the Laboratory equipment is financially 

responsible for it. 
4.   Disconnection of measurement system is carried out in the presence of the instructor . 
5.   After completion of measurements, the measurement station must be tidied up and the 

equipment must be returned to the lab assistants’ room. 
6.   Eating and drinking is forbidden in the Laboratory. 
7.   All outerwear and luggage must be left in the cloakroom. 

 
 
 
 
 
 
 
 



List  of  experiences 

1.  F100. Determination of density by a pycnometer. 

 2. F102. Determination of temperature dependence of a viscosity coefficient of a liquid by a 
rotational viscometer.  

3.  F108. Measurement of aerodynamic resistance for bodies of different shapes.  

4.  F103. Elastic collisions on an air track. 

5.  F110. Verification of the equation for rigid body rotation. 

 6. F109. Vibrations of coupled pendulums.  

7.  M102 Energy transformations in the movement of pendulum (FILAMI) 

8.  M104 Free fall and slide on an inclined plane (FILAMI) 

9.  D103 Coupled physical pendulums (FILAMI) 

10.D101 Properties of sound waves. Sound velocity and beats (FILAMI) 

  

 



Algorithm for evaluation of measurement uncertainties, 

 the wps1 principle 
(after  B.  Piątek,  Physics  at  school,  1/1976)  

1. Find the formula relating the measured physical quantity with other physical quantities or with 

results of simple measurements of the same quantity:  

y = f(a, b, c …). 

2. Find out if the measurements of the quantities a, b, c... are simple measurements or a sum or 

difference of a few simple measurements of the same quantity or a product or ratio of results of 

simple measurements by a dimensionless constant, or a combination of the above.  

3. On the basis of the accuracies of the tools or instruments used for simple measurements of 

particular quantities and assuming the worst possible scenario1 (wps principle) evaluate the 

absolute uncertainties Δa, Δb, Δc, .... of the quantities  a, b, c, ... . 

4. Calculate the value of the measured quantity y, following the principles of approximations. 

5. Find the highest possible values of  a, b, c, .... measured as  

   a + Δa; b + Δb; c + Δc ... , 

 and the lowest possible values a - Δa; b - Δb; c - Δc ... 

6. On the basis of the worst possible scenario principle calculate the highest possible value of the 

quantity measures by a given method and with the use of given measuring instruments: 

ymax =  f (a ±  Δa; b ±  Δb; c ±  Δc), 

 calculate the smallest possible value of a given quantity  

ymin = f (a ± Δa; b ± Δb; c ± Δc).  

Depending on the type of the formula, that is e.g. on whether a given quantity is in the numerator 

or denominator, in order to get the maximum value we add the uncertainties (when in the 

numerator) or subtract the uncertainties. If the formula is a combination of fractions and sums, 

one should analyze where the summation and where the subtraction should be made to get the 

maximum value.  

7. Calculate  Δy+ = |ymax – y|  and   Δy-  = |y  - ymin|  

8. If  Δy+ ≠ Δy- , then take the greater of these two differences as the maximum uncertainty Δy of 

the measured quantity y.  

9. Write the final result of the measurement as  

y   ±   Δy 

10. Express the measurement uncertainty in percentage (Δy/y x 

100%)  
 1 The worst possible scenario principle, wps: on evaluating the uncertainties of measurements, assume the worst 

possible scenario from the point of view of the measurement accuracy.  



 Experiment F100 
 
Determination of solid bodies density with the use of a pycnometer  
 
 
 
Aim: Determine the metal density  
 
Pycnometer is a device for measurement of the volume of solids. It is a glass flask tightly 
closed with a cork with a capillary hole. Fill the pycnometer with water, then place in the 
flask solid bodies whose density you wish to determine. The volume of water that will flow 
out of the flask is equal to the volume of the solid bodies placed in the flask. The density of 
the solid body or bodies placed in the flask is calculated from the formula: 
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x
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The mass of the solid body mx is measured using the laboratory balance. The volume of the 
solid body vx  is calculated from the formula: 
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  where 
   OH2ρ  - the density of water,  
      mx -  the weighted mass of the solid body  
   my -   the mass of the pycnometer filled with water  
   mz -   the mass of the pycnometer filled with water and the pieces of 
metal.  
 
 
The volume of water that spilled out from the pycnometer after placing in it the pieces of 
metal is equal to the volume of the metal pieces:  
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2
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The mass of the spilled water OHm 2

 is equal to the mass difference: 
 
(4)     OHm 2

= (mx +my) – mz , 
 
Therefore,     xv  = OHv 2

=
OH

zyx

OH

OH mmmm

22

2
ρρ

−+
= . 

 
The metal density can be calculated from  
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And the measurement uncertainty is  
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Measurements  
Weigh dry pieces of metal ( xm ), pycnometer filled with water ( ym ) and pycnometer filled 
with water and metal pieces ( zm ) 
 
Calculations  
Remember to appropriately change the units. Results of measurements substitute to formula  

(5). The uncertainty of measurements is calculated from eq. (6). Compare the final result with 

the actual density of copper and aluminum given in tables.   

 
3

31089,8
m
kgT

Cu ⋅=ρ ,  3
310699,2
m
kgT

Al ⋅=ρ  

Apply the criterion of agreement: xx
T ρρρ Δ≤− . 

If the above inequality is met, your result is in agreement with the actual value, otherwise 

analyze the possible sources of error.  

 

Density of water at temperatures from the range 15-25 oC in 3m
kg   

 
Temp. 
w oC 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 

15 999,099 999,084 999,069 999.054 999,038 999,023 999,007 998,991 998,975 998,959 
16 998,943 998,926 998,910 998,893 998,877 998,860 998,843 998,826 998,809 998,792 
17 998,774 998,757 998,739 998,722 998,704 998,686 998,668 998,650 998,632 998,613 
18 998,595 998,576 998,558 998,539 998,520 998,501 998,482 998,463 998,444 998,424 
19 998,405 998,385 998,365 998,345 998,325 998,305 998,285 998,265 998,244 998,224 
20 998,203 998,183 998,162 998,141 998,120 998,099 998,078 998,056 998,035 998,013 
21 997,992 997,970 997,948 997,926 997,904 997,882 997,860 997,837 997,815 997,792 
22 997,770 997,747 997,724 997,701 997,678 997,655 997,632 997,608 997,585 997,561 
23 997,538 997,514 997,490 997,466 997,442 997,418 997,394 997,369 997,345 997,320 
24 997,296 997,271 997,246 997,221 997,196 997,171 997,146 997,120 997,095 997,069 
25 997,044 997,018 996,992 996,967 996,941 996,914 996,888 996,862 996,836 996,809 

 
  



Experiment F102

Temperature dependence of liquid’s viscosity with the help
of a rotational viscometer

Viscosity or the internal friction is the property characterizing gases, liquids and
some solids. It describes the resistance against flowing stimulated by external
forces and is a consequence of intermolecular interactions. Viscosity is measured
by the coefficient of viscosity, defined as the strength of tangent force F that
needs to be applied to the unit area of the shifting layer S in order to maintain
in this layer the laminar flow with a constant gradient of frequency G equal to
1. For the uniform shape deformation for which G = const, the viscosity η is
defined by the formula:

η =
τ

G
, (1)

where

τ =
F

S
(2)

is the tangent stress and

G =
dV

dz
=
V0
h

(3)

is the gradient of velocity V, the values of V0 and h are defined in Fig. 1.
The SI unit of viscosity is [kg m−1 s−1] = [N S m−2] while the CGS unit is
[puaz = dyna s cm−2 = 0.1 N s m−2]

Viscosity is measured by viscometers. One of them is the so-called rotational
viscometer. The main elements of this device is a system of two co-axial cylin-
ders. The external one of radius R is immobilized, while the internal one of the

1



radius r rotates at a constant angular velocity omega. The liquid studied is pla-
ced between the cylinders and because of the rotations of the internal cylinder
a gradient of velocity is generated in it.

The rotation is transmitted from the rotor to the moving cylinder through a
spiral spring. The angle of rotation of this spring is proportional to the moment
of force M which should be applied to the cylinder to maintain a constant angular
frequency omega. This moment is also the moment of the force of viscosity:

M = rF (4)

The deviation of the spring from the equilibrium position is measured by a
resistor potentiometer in the bridge circuit. The deviation of the amperemeter
indicator in the diagonal arm of the bridge is proportional to the moment of
force of viscosity:

M = kα (5)
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As the tangent stress is described by eq. (2), then on the basis of eq. (4) and
(5) and the formula for the side area of the cylinder:

S = 2πrl (6)

we get:
τ = Zα (7)

Where Z is a constant defined as follows:

Z =
k

2πr2l
(8)

The value of this constant is given in the user manual for the viscometer. The
value of the gradient G is also given in the user manual:

G =
r

R− r
ω (9)

For different angular velocity that is for the right number of the gear (from 1
to 12) and the right symbol of type of transmission (a or b).

Thus, the viscosity can be found from the simple formula

η =
Z

G′
α (10)

where G′ = Gv/50 is the value of the gradient corrected for a given frequency
in Hz, as the velocity of the synchronized engine used in the viscometer depends
on the voltage frequency and the value of gradient G in the table is given for
v=50Hz.

Viscosity of a liquid strongly depends on temperature and determination of
the character of this dependence is the subject of the experiment. The tempe-
rature of the liquid studied is controlled and stabilized by a thermostat. The
thermostat system comprises a water bath surrounding the cylinders and ma-
intaining their constant temperature.
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Experiment F108

Drag force

Any object moving in a fluid (as a fluid we understand a liquid or gas) is subject
to a force acting in the direction opposite to the direction of the object motion,
called the drag force, air resistance or fluid resistance, P .

Drag depends on the type of fluid (its density and type of fluid flaw) and the
object velocity. The fluid flaw can be laminar or turbulent. Turbulent flaw –
is characterized by chaotic changes in pressure and velocity, the fluid particles
move on collision trajectories, often form vortices, move back and forward, make
collisions, which leads to the fluid mixing. Laminar flow – in this type of flow
the fluid flows in parallel layers with no disruption between them. This type of
flow takes place at low flow velocities. The upper limit of flow velocity at which
laminar flow changes into turbulent flow can be calculated for a given fluid and
flow conditions.

The problem of an object moving in fluids has been considered by Newton
and Stokes. They have derived formulae relating the drag force P to the object
velocity. Stokes considered the laminar flow of a ball in the fluid. Newton did
not assume the laminar flow nor the ball-shape of the object and derived the
analogous formula for the turbulent flaw.

The drag force according to Newton is:

P = CS
ρv2

2
(1)

where
S – is the cross-section area of the object measured in perpendicular to the
direction of its movement,
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ρ - the fluid density (in our experiment it is the air density of ρ = 1.2928kg/m3

v - the object velocity
C – proportionality coefficient.

For a given object and fluid, it is possible to check which formula better
describes the drag force dependence on the object velocity on the basis of me-
asurements with the use of aerodynamic carousel.

The main element of the instrument is a heavy stand made of metal, S. On
top of it there is the rotating arm A and at the end of this arm the profiles
studied are mounted. The profile weight is balanced by a counterbalance B.
The vertical rotating element below the arm is set in small friction bearings,
and is inside a cylinder C on which there is a thread with the help of which
the carousel is set in rotating motion. The thread is run through two blocks D
and attached to two bowls E. When the bowls are not loaded the system is in
equilibrium, by loading one of them the system is set in motion.
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The force F , equal to the weight of the loading placed in a bowl is applied
to the surface of the cylinder C of the radius r and the moment of the force is
rF . The moment is transferred to the profile studied which is at a distance R
from the axis of rotation, so that

rF = RP. (2)

Find the aerodynamical drag coefficient C using (1), (2) and from formula
for velocity in circular motion:

v =
2πR
T

. (3)

We obtain:

F = C
2π2SρR3

r

1
T 2
, (4)

and eventually, get:

T 2 = C
2π2SρR3

rg

1
m
. (5)

Now, we can consider above equation as linear in slope-intercept form: y = ax.
Here, y = T 2, x = 1/m and slop of the line a = C 2π

2SρR3

rg . From the slope of
the line a, we can find C:

C =
arg

2π2SρR3
. (6)

Moreover, find a unit of measurement of coefficient C using following:
[F ] = kgms2 , [S] = m2, [R] = [r] = m, [T ] = s and [ρ] = kq

m3 .
Remember to measure parameters of the device (R, r), as well as tested

objects in order to calculate surface S.
Calculate the uncertainty of C from:

∆C = (
∣∣∣∣∆aa
∣∣∣∣+ ∣∣∣∣∆rr

∣∣∣∣+ ∣∣∣∣−∆S
S

∣∣∣∣+ ∣∣∣∣−3
∆R
R

∣∣∣∣)C. (7)

Finally, compare drag coefficients for square and circular shapes:

|Ccircle − Csquare| ¬ ∆Ccircle + ∆Csquare. (8)
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Experiment F103 
 
Elastic collisions on the air track  
 
 
Aim: Conservation of momentum  
 
According to the law of momentum conservation if a system is isolated (i.e. not subjected to 
external forces) its total momentum does not change.  
 
When two bodies endowed with momentums 1p  and 2p collide, then according to the law of 
momentum conservation we have  
 

     1p  + 2p = 
'
1p  + 

'
2p , 

where 

   
'
1p  and 

'
2p  are the momentums after the collision. 

 
Momentum is a vector and direction of the momentum vector 

→

= Vmp id determined by the 

direction of velocity V . 
 
Experiment 
The measurements are made on the air track whose construction permits the movements of 
cars with negligible friction.  

 
Measurements   
Clip car B having mass mB to the electric fastening, then release the car and measure the time 
in which car B passes through gate P1. Repeat the measurement a few times. Calculate the 
initial velocity of car B that is VB from the equation:   
 

(1)     
B
B
t
l

BV = , 

  Where  



   Bl  is the length of car B.  
 
Repeat the same procedure for car A and gate P2.  
These data are needed to find the initial momentum.  
At the next step collect the data for determination of the final momentum.   
Let car B and car A collide. Measure the time tA in which car A passes through gate P2 and 
calculate its velocity VA from the formula analogous to eq. (1).  
 
 
Measure the time t’B in which car B passes through gate P1 after the collision with car A. The 
velocity of car B after the collision is V’B : 
 

(2)     
B
B
t
l

BV '' = . 

 
 
Using the electronic balance measure masses of cars A and B, mA and mB. Note the 
measurement uncertainties AmΔ  and BmΔ . 

Measure the lengths of cars A and B, Al  and Bl  , note the uncertainties AlΔ  and BlΔ . 
 
Repeat many times (e.g. 20) the measurements of the times the cars pass the gates.  
 
 
Calculate  
 

a)   the initial momentum using the simplified formula 
 
(3)    

B

B

A

A
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      b)  the measuring uncertainty of the initial momentum as   
 
 (4)    2

minmax pp pp
pp

−
=Δ , 

 
                       where 
   

)(
))((

)(
))((

max BB

BBBB

AA

AAAA
tt

llmm
tt

llmm
pp Δ+

Δ−Δ−

Δ−

Δ+Δ+ −= , 

 
   

)(
))((

)(
))((

min BB

BBBB

AA

AAAA
tt

llmm
tt

llmm
pp Δ−

Δ+Δ+

Δ+

Δ−Δ− −= ,  

 
Or using the exact differential:                                                
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c)   The final momentum is   
 
(6)    
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d)   The uncertainty of the final momentum calculated from the simplified formula is  
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The uncertainty of the initial momentum can be found using the exact differential method and 
then it is                                                 
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e) The final momentum can be found as   
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f) The uncertainty of the final momentum calculated using the simplified formula is  
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The uncertainty of the final momentum calculated using the exact differential method is  
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g) The measuring uncertainties of times loaded with random uncertainty is calculated from the 
standard deviations        
                                                

AtA St 3=Δ ,        
BtB St 3=Δ ,   

    
AtA St '3' =Δ ,      

BtB St '3' =Δ . 

 
 

 
In order to check if the law of conservation of momentum is satisfied, apply the following 
criterion of agreement:     
 
 
(9)         kpkp pppp Δ+Δ≤− . 

 
If the above inequality is met, you have shown that the law of conservation of momentum is 
valid. If not, analyze the reasons and identify the possible sources of error.  
 
Knowing the relation between the momentum and kinetic energy of an object in motion: 
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You can verify the law of energy conservation using your measurements.  
 
 
(11)                              k

k
k
p

k
k

k
p EEEE Δ+Δ≤−  ? 

 
For this purpose calculate  

a)   The initial kinetic energy as:   
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b)   Uncertainty of the initial kinetic energy can be calculated by two methods, 

similarly as that of momentum,  

    - using the simplified formula as      
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      - or using the exact differential as:  
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c)   The final kinetic energy is    
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d)   The uncertainty of the final kinetic energy can be calculated by two methods,  

    - using the simplified formula as      
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and 'p stands for the final momentum,  

 
 
    - or by the exact differential: 
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Experiment F109.  
Oscillations of coupled pendulums  
 
Aim: To verify if the frequency of beats is equal to the difference in the frequencies of normal 
oscillations 
 
Coupled pendulums are two physical pendulums coupled with each other, which means connected 

through a device transmitting energy from one pendulum to the other. Mathematically oscillations 

performed by each pendulum can be described as superposition of two harmonic oscillations of 

little different frequencies, taking place along the same line. The component frequencies are called 

normal frequencies.  

 

When two pendulums of close periods of normal oscillations are coupled the system shows beats. 

Let’s assume that at the initial moment pendulum II is motionless, while pendulum I performs 

oscillations. Then the amplitude of oscillations of pendulum I decreases, while the amplitude of 

oscillations of pendulum II increases reaching a maximum when the amplitude of pendulum I 

decreases to zero, then the energy is passed to pendulum I. The time in which the amplitude of 

oscillations of one of the pendulums reaches the initial value is called the period of beats T_d,while 

the corresponding frequency omega_d – is the frequency of beats.  

 
 
A system of coupled pendulums          Oscillations of coupled pendulums - beats 
 
No transmission of energy through oscillations is observed if the pendulums perform the so-called 

normal oscillations. The first normal oscillation takes place when the pendulums perform 

oscillations in the same phase: \phi_1=\phi_2, these oscillations are characterized by the angular 

frequency \omega_1, known as the first normal frequency and corresponds to the period T_1. The 

second normal oscillation takes place when the pendulums perform oscillations in the opposite 

phases:  \phi_1= -\phi_2, with the second normal angular frequency \omega_2 and period T_2. 

The first and second angular frequencies meet the relations:  

\omega_2 = \omega_1 = \omega_d [1] 



 
 
 
Measurements and statistics of results  

 

1.   Repeat 5 times the measurement of the period of the first and second oscillations .   
2.   Repeat 5 times the measurement of the periods of the first and second normal oscillations.   

 

 
3.   Repeat 5 times the measurement of the periods of beats.  



 
4.   The formulae for estimation of uncertainties of direct measurements  

 
5.   Determine the frequencies of normal vibrations \omega_1 and \omega_2 for pendulums I 

and II on the basis of measurements made.  

 



 
6.   Determine the frequencies of normal oscillations  \omega_1 and \omega_2 on the basis of 

the measurements: 

 



 
7.   Find the frequency of beats \omega_d on the basis of the measurements : 

 
 
 
 
 
 
 
 
 
 
 
 



8.   Find the frequency of beats \omega_d from formula [1]: 

 
9.   Final results  

 

10.  Check if the formula [1] is valid: 

 



Experiment F109.  
Oscillations of coupled pendulums  
 
Aim: To verify if the frequency of beats is equal to the difference in the frequencies of normal 
oscillations 
 
Coupled pendulums are two physical pendulums coupled with each other, which means connected 

through a device transmitting energy from one pendulum to the other. Mathematically oscillations 

performed by each pendulum can be described as superposition of two harmonic oscillations of 

little different frequencies, taking place along the same line. The component frequencies are called 

normal frequencies.  

 

When two pendulums of close periods of normal oscillations are coupled the system shows beats. 

Let’s assume that at the initial moment pendulum II is motionless, while pendulum I performs 

oscillations. Then the amplitude of oscillations of pendulum I decreases, while the amplitude of 

oscillations of pendulum II increases reaching a maximum when the amplitude of pendulum I 

decreases to zero, then the energy is passed to pendulum I. The time in which the amplitude of 

oscillations of one of the pendulums reaches the initial value is called the period of beats T_d,while 

the corresponding frequency omega_d – is the frequency of beats.  

 
 
A system of coupled pendulums          Oscillations of coupled pendulums - beats 
 
No transmission of energy through oscillations is observed if the pendulums perform the so-called 

normal oscillations. The first normal oscillation takes place when the pendulums perform 

oscillations in the same phase: \phi_1=\phi_2, these oscillations are characterized by the angular 

frequency \omega_1, known as the first normal frequency and corresponds to the period T_1. The 

second normal oscillation takes place when the pendulums perform oscillations in the opposite 

phases:  \phi_1= -\phi_2, with the second normal angular frequency \omega_2 and period T_2. 

The first and second angular frequencies meet the relations:  

\omega_2 = \omega_1 = \omega_d [1] 



 
 
 
Measurements and statistics of results  

 

1.   Repeat 5 times the measurement of the period of the first and second oscillations .   
2.   Repeat 5 times the measurement of the periods of the first and second normal oscillations.   

 

 
3.   Repeat 5 times the measurement of the periods of beats.  



 
4.   The formulae for estimation of uncertainties of direct measurements  

 
5.   Determine the frequencies of normal vibrations \omega_1 and \omega_2 for pendulums I 

and II on the basis of measurements made.  

 



 
6.   Determine the frequencies of normal oscillations  \omega_1 and \omega_2 on the basis of 

the measurements: 

 



 
7.   Find the frequency of beats \omega_d on the basis of the measurements : 

 
 
 
 
 
 
 
 
 
 
 
 



8.   Find the frequency of beats \omega_d from formula [1]: 

 
9.   Final results  

 

10.  Check if the formula [1] is valid: 
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M102. Transformations of energy in the motion of a pendulum  

 

Aim:  

 Determination of the real motion of a model of mathematical pendulum  

 Measurement of time dependence of the pendulum position (t), 

 On the basis of (t)calculation of time dependencies of the pendulum velocity v(t),kinetic 

energy Ek(t),potential energy Ep(t), total energy Ec(t), 

 Measurement of the period T of pendulum oscillations as a function of the amplitude of 

oscillations 0, 

 Numerical calculation of the dependence T( 0) and its comparison with experimental one.  

Problems: 

 Harmonic motion, 

 Equation of the mathematical pendulum in the approximation of small angles, 

 Newton’s second law of dynamics. 

References: 

 HenrykSzydłowski “ PracowniaFizyczna”, Wyd. Nauk. PWN,Warszawa1994 

 David Halliday, Robert Resnick, Jearl Walker “Podstawyfizyki” Wyd. 

Nauk.PWN,Warszawa2003 

 

1. Introduction 
 

Mathematical pendulum (Fig. 1) is a mass m concentrated at a point and hanged on a 

weightless string of the length l, performing periodical oscillations about the point of equilibrium. 

The oscillations are performed without air resistance and without friction at the point of 

attachment. Such a pendulum is an idealised representation of a real physical pendulum.  

 

Figure 1. Model of a mathematical pendulum with the forces acting on the mass. 

 

Analysis of the pendulum oscillations is based on the Newton’s second law of dynamics. 

The driving force is the component GF


of the gravitation force GF


, tangent to the arc over which 
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the mass m moves. The value of the force is given by 

 

)sin()sin( mgFF GG


,     (1) 

 

where g is the gravitational constant. According to the Newton’s second law of dynamics, the 

force is known to produce a motion with instantaneous acceleration a meeting the relation, 

 

maFG


.       (2) 

 

Taking into account the direction of the force, the kinematic definition of acceleration a = 

d
2
s/dt

2
(where s is the displacement) and the relation between the length of the arc, s, and the 

amplitude of the pendulum, s = l , we finally have, 

 

0)sin(
2

2

l

g

dt

d
.      (3) 

 

Equation (3) does not have a simple analytical solution. Only on condition that the amplitude of 

the pendulum is small so that the relation sin( ) = is satisfied, we get a well-known in physics 

equation for the harmonic oscillations 

 

0
2

2

l

g

dt

d
.      (4) 

 

whose solution is,  

 

)cos()( 00 tt       (5) 
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where 0  is the amplitude of oscillations, 
l

g
0 is the frequency of normal oscillationsof the 

pendulum and is the initial phase of the movement for t= 0. Knowing the frequency of 

oscillations it is possible to calculate the period of a pendulum in the approximation of small 

amplitude, from the following equation,  

 

g
lT 2        (6) 

 

In general, replacement of eq.(3) by eq.(4) is not justified, which means that the pendulum 

oscillations are not harmonic and the period of pendulum motion is a function of amplitude.  

A simple numerical integration permits finding the period of oscillations for a specific 

amplitude 0. 

 

Figure 2. Illustration for numerical determination of the pendulum period. 

 

Increase in the kinetic energy at the transition from 0 to is equal to the potential energy 

difference at these positions, mg(h0 – h). Assuming 0 as the starting point (v = 0), we have 

 

)(
2

)(
0

2

hhmg
mv

      (7) 

 

And, because h( ) = l[1 – cos( )], where lis the length of the pendulum, 

 

))cos()(cos(
2

)(
0

2

mgl
mv

    (8) 

 

thus 
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))cos()(cos(2)( 0glv       (9) 

 

The time needed for covering the arc section ds = ld is dt= ds/v. Integration of dtover the angle 

0  to 0 gives one fourth of the pendulum period: 

        

0

0
0

))cos()(cos(24 gl

ldT
.      (10) 

 

Simple procedures for numerical integration are given below.  

The aim of this experimentis todetermine the dependence of the period of the pendulum 

oscillations, T, on their amplitude, 0.Numerical integration of eq. (10) permits the calculation of 

theoretical value of the pendulum period and its dependence on the oscillations amplitude. Thus, 

the experimentally determined T( 0) dependence can be compared with the simulated one.On the 

basis of numerical calculations you will be able to find the instantaneous values of velocity, 

kinetic energy, potential energy and total energy.  

In our experiment, the mathematical pendulum is approximated by a relatively heavy 

cylinder (~0.5kg) set on a light aluminium rod of about 1 m in length. Large inertia of the 

pendulum, its hanging on a high quality ball bearing and small mechanical resistance of the 

potentiometer used as a sensor of position make such a system a reasonable model of a 

mathematical pendulum.  

 

Tasks  

- Measure the length of the pendulum and its mass. 

- Calculate the period of pendulum from formula (6). 

 

2. Measuring setup. 
 

The quantity to be directly measured is voltage Umeasured on a potentiometer whose axis 

of rotation coincides with the axis of the pendulum rotation. In order todetermine the real angle of 

pendulum deviation from the position of equilibrium, corresponding to the voltage U,you should 

measure the voltage at the position of equilibrium(U0) and the voltage U for a large known 

amplitude e.g. when the pendulum reaches the restricting boundary. Then, the voltage measured 

U can be easily converted into the amplitude : 

 

0

0

UU

UU
       (11) 
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The voltage is measured with the use of an analog-digital converter card connected to a computer. 

The communication between the computer and the card is realized through the available set of 

subroutines.  

 

3. Solution of differential equations of motion(numerical integration) 
 

The problem is to solve the equation of motion on the basis of the known acting force. We 

want to know current values of the velocity and position of the pendulum on the basis of the 

instantaneous acceleration calculated from the Newton’s second law of dynamics, as the ratio of 

the instantaneous force to mass.  

 

t

tFttF
tf

)()(
)(        (12) 

 

ttftFttF )()()(       (13) 

 

Following the procedure described by equations (12) and (13), you should calculate the 

position x as a function of time at first for the pair acceleration (f=a)and velocity(F=v) and then 

for the pair velocity (f = v), and position (F = x).By choosing a suitably small value of t, it is 

possible to get a good approximation of the real movement of the pendulum. It should be 

remembered that the driving force of the pendulum is also a function of time, through the 

dependence on the angle eq.(1). 

 

Tasks  

Write a program inLabViewto simulate the motion of a mathematical pendulum. As initial 

parameters use l,g, tand 0. You should get as a result a quantity of Waveformtype containing 

the information on the pendulum positions at subsequent moments of time ti= i t.When writing the 

equations remember about the signs representing the sense of particular quantities, e.g. 

acceleration is always directed in the opposite to the direction of deviation from the position of 

equilibrium. . 

 

4. Numerical differentiation  
 

Use again the approximation described by eq. (12),but this time the function F(t) is known 

and f(t)should be found directly from this equation. In this experiment numerical differentiation is 

used for determination of instantaneous values of the pendulum velocity.  

 

5. Experiment  
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Write program or programs according to the scheme given below.  
 

The subVI needed for communication with the measuring device are given in the palette  

"Functions->User Libraries->Pendulum" .  

1. Write a program for continuous reading the voltage drop on the potentiometer mounted at the 

pendulum rod attachment. Use subVI“Configure (subVI)” and“Read voltage (SubVI)’. Use 

the “Timed Loop”While to perform synchronous voltage reading at the rate of 50values per 

second (delay of 20ms). The values measured display in the WaveForm Chart 

. 
 

 

2. Use the measured values of voltage and convert them into the angle, voltage [V] into angle 

[rad]. Using the program written, measure the voltage U0 corresponding to the equilibrium 

position of the pendulum. This value corresponds to =0. 

b) Measure the voltage corresponding to the pendulum deviation by 90 to the left (U+90) and 

to the right (U-90), for the range of 180stopni= . Find the calibration constant from the 

equation 
9090

]/[
UU

VradC  

3. Use the function“Normalise (SubVI)”to convert continuously the values of voltage into angles of 

amplitude.  Send the value U0 to the connector “Zero shift[V]”,while the value Cto the connector 

“Scaling constant[rad/V]”.
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Mechanical energy relations in pendulum motion  
 

1. Make the function (SubVI),to calculate the potential energy of the pendulum on the basis of read off 

values of the amplitude angles Ep mgL(1 cos( )) 

2. Make the function (SubVI),to calculate the kinetic energy of the pendulum on the basis of the 

current values of angular velocity, 

22222 )(
2

1

2

1

2

1

dt

d
mLmLmvEk  

To calculate the derivative use the function “Derivativex(t)PtbyPt.vi”to calculate the derivative 

point by point. 

 

Besides the current value of the amplitude angle, to calculate d , the function needs the value 

of dt. When calculating the derivative numerically, dtis tso the time distance between two 

measurements of the angle, in the example presented 20ms) 

3. Find out the total energy as a sum of kinetic and potential energy terms. Draw the time 

dependencies of all three terms. Analyse the relationship between the energies, potential 

energy is exchanged into kinetic energy. The total energy is constant for small time intervals. 

Over longer time intervals you will note the effect of damping. Over a longer time interval the 

effect of damping is well seen. This effect is related to the energy dissipation in the friction of 

the bearing, the potentiometer and the resistance of air. Try to guess the character of the time 

dependence of the energy dissipation, is it linear or perhaps exponential?  

 

Dependence of the pendulum period on its amplitude –T( 0) 
 

1. Record the time changes in the pendulum amplitude, starting from high amplitudes to almost 

total disappearance of oscillations. Write the values of times and angles in a table and then 

present them as a plot of (t) in XY Graph.  

2. Take advantage of XY Graph cursors tofind out the period of oscillations for a given 

amplitude (angle). In order to do this, find the positions of the minima or maxima of 

amplitude.  

3. Write a new program (VI). Write the read off cursor positions (the values of Tand 0) into the 

one-dimensional tables. Make an XY Graph of T( 0).Comment on the result obtained taking 



-8- 

Pracownia Podstaw Fizyczne Laboratorium Mikrokomputerowe Wydział Fizyki 
Eksperymentu Fizycznego  Filami UAM 
  

 

into account its comparison with the result obtained for a mathematical 

pendulum(T( 0)=const.), 
g

lT 2 . 

4. Estimate the value of period that would be observed for 0 0. Using this value and the 

equation for the pendulum period, calculate the length of the pendulum. Compare the value 

obtained with the real length of the pendulum. Comment on the result, answer which value 

is higher and why.  

 

Additional tasks  
 

1. Read the additional materials provided.  

2. Determine the relation T( 0) from numerical integration of full (not simplified) equation of 

motion (3). Compare the results with experimental data.  

3. Estimate the error following from the approximation of the real pendulum by a mathematical 

pendulum. Calculate the period of the real pendulum treating it as a physical pendulum. For 

the sake of simplicity assume that the weight has a ball shape. Weight the aluminium rod.  

 

Technical remarks  
 

Numerical integration  

The content given below is given just for illustration. The methods described do not 

ensure the optimum precision or rate of execution. Those interested should consult any handbook 

on numerical methods. . 

 

a)   Definite integral in finite limits. The method of trapeziums. 

The geometrical interpretation of a definite integral
b

a

dxxfF )(  is the area under the 

function to be integrated. The interval of integration <a,b> is divided intonparts of the same size, 

at the points x1,x2,x3,...,xn+1of the width x=(b-a)/n.  The area Piunder the plot of the function 

f(x)in the section (xi,xi+1)can be approximated by the area of a trapezium of the sides 

f(xi)andf(xi+1)and the height of x, soPi= [f(xi)+ f(xi+1)] x/2. This implies the following equation

2
)(2)()(

1

1

x
xfbfafF

n

i

i . 
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In LabViewyou can use the function “Numerical Integration”,whose arguments are the 

values of the integrated function given in a table and the interval x.The interval xshould be 

chosen taking into account the rate of the function changes. It is recommended to continue the 

calculations for decreasing value of x as long as it stops showing significant changes.  

 

Figure 3.The plot of a fragment of the integrand from eq. (10). The integral is equal to the area 

marked in grey.  

 

Unfortunately, the integrand from eq. (10) is discontinuous for = 0(seeFig.3).As the integral is 

finite despite this, the period of the pendulum has a defined value, the solution is to reduce the 

value of x and approaching 0 to such a point that the integral value stops changing significantly. 

As no increase in the density of division is needed in the range through which the integrand is 

relatively flat, it is recommended to divide the integral into a sum of two integrals calculated for 

different x, different density of division. As the point of division we suggest 90 % of the range 

of integration. It can be mathematically presented as follows: 

N

j

b

a

N

j

j

j

j

dfFF
11

)(  

where 

 

.,
10

, 11 jjjj ba
ab

bbaa  

 

For illustration we give a few values of aj, bj fora = 0 andb =1: 

 

j 1 2 3 4 5 6 

aj 0 0.9 0.99 0.999 0.9999 0.99999 

bj 0.9 0.99 0.999 0.9999 0.99999 0.999999 
 

Assuming a division of each section into n = 100 points, we should get a good accuracy of the 

f(
) 
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integral for N=8,so after 8x100=8000steps.Note that for the density of division from the last 

section extended over the entire range of integration it is necessary to perform 10
8 

steps.  

 

Tasks 

 

Write a program inLabViewto calculate the period of a mathematical pendulum as a function of 

amplitude of oscillations. After selection of the optimum values of n and N express it in the form of 

sub-Vi with inputs  l, g, 0and output giving T. 
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M104. Free fall and sliding on the ramp  

Aims: 

 Observation of electromotive force induction in a coil by a magnet moving inside the coil.  

 Observation of changes in the position and velocity of a body performing a free fall and 

sliding over a ramp.  

 Measurement of the acceleration of a body sliding over a ramp as a function of the ramp 

inclination angle.  

 Determination of the friction coefficient characterising the friction between the sliding body 

and ramp surface.  
 

1. Introduction 
 

Galileo Galilei is regarded as one of the fathers of contemporary science in recognition of 

his studies in the area of astronomy and physics. One of his greatest achievements was 

performance of the accurate effect of the gravitational force on the free fall of bodies. Galileo 

assumed that upon free fall the velocity of the falling body should increase by the same value in the 

same time so at a constant rate. In his times the testing of this hypothesis was a great challenge. 

Galileo was not able to measure the motion of a free falling body in time as there was no 

technology allowing recording of so fast changes. To overcome this 

problem Galileo decided to decrease the velocity of the falling body by 

placing it on a ramp. This solution is justified by the fact that the free fall 

can be treated as sliding on a vertical ramp. Thus the body sliding over an 

inclined ramp should change its velocity in the same way as a freely 

falling body.  

 

2. Equipment   
 

A plastic tube with a system of equidistant coils, permanent magnets. 

 

3. Instruments 
 

Changes in velocity of a given object when it is moving can be realised by 

measuring time changes in the object position, so measuring the path 

dependence on time. Determination of a moving object position needs a possibility of checking its 

position over a relatively long path. Such a possibility can be realised using a plastic tube of 1.15 m 

in length on which 6 equidistant and connected in series coils are wound up. The first coil is wound 

up at a distance of 7.5 cm from the upper end of the tube. The other coils are wound at every 20 

 

75

200

Rys. 1. Układ

pomiarowy

Figure 1.  
Experimental 
setup 
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cm. Each coil is about 1 cm long, has the internal diameter of 1.5 cm, while the external diameter 

of 1.6 cm. The coils are identical and are made of 17 loops of copper wire of 0.5 mm in diameter. 

The ends of the wire are connected to the sockets through which they are linked to the measuring 

interface. This construction permits the use of electromagnetic induction (IEM) to determine the 

moment of time at which a given object passes the coil, although the falling object has to be a 

magnet. In this experiment two permanent magnets differing in the type of surface, will be used. 

Their use will permit determination of the effect of a static friction (between the surface of the 

magnet and the surface of the ramp) on the movement of the object.  

 

4. Theoretical introduction  
 

Electromagnetic induction  

Because it is related to the method for the measurement of position of a sliding body, let’s refresh 

your knowledge on electromagnetic induction.  

In short, the electromagnetic induction is the phenomenon of generation of an electromotive 

force E in an electric circuit upon time changes in the flux of magnetic inductionpassing through 

the circuit. The source of a magnetic field can be a permanent magnet. The electromotive force 

generated is proportional to the rate of changes in the magnetic flux : 

 

dt

d
E .      (1) 

 

The minus sign means that the direction of the induced current is such that the effects of the 

current oppose the phenomenon (the change) generating it, the Lenz rule.When a permanent 

magnet passes through a cell of N wire loops, the total value of Ecan be approximated by the 

equation 

 

dt

d
NE .      (2) 

 

Measurement of Eas a function of time permits determination of certain parameters related 

to the magnetic field of the falling magnet.  
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A body on the ramp  

 

 

 

The figure presents a body of mass mplaced on a ramp inclined at the angle to the flat 

surface and the forces acting on it. Nis the force of pressure, g is the earth gravitational constant, f 

is the friction force, f= N, where is the coefficient describing the static friction between the 

surface of the body and the surface of the ramp. Analysis of the forces presented in the figure leads 

to the well-known equation describing the acceleration of the sliding body as a function of the 

ramp inclination angle,  

 

))cos()(sin(ga .     (3) 

 

The acceleration calculated from this equation can be compared with that measured in the 

experiment in order to find out the static friction coefficient. 

 

5. Realisation of the experiment  
 

A. Observation of electromotive force induction 

1. Start the program “Spadek.vi” [Fall.vi] and record the time course of voltage induced in the 

coil by the magnet moving inside it.  

2. Note that the voltage induced in each subsequent coil changes linearly with the time of the 

magnet fall. What does this observation imply about the magnet velocity?  

 

B. Free fall of a body  

1. Start the program “Spadek.vi” [Fall.vi] and similarly as above record the time changes in 

the induced voltage. Press the button “Zakończpomiariprzejdźdo analizy” [Stop the 

measurement and go to analysis]. 

2. In the tab“Analiza” [Analysis] you will find the results of analysis of the measured time 
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changes in the voltage induced; moment of the start of motion, acceleration determined 

from the time dependence of the path for the minima and maxima. The tables also give the 

positions and values of the minima and maxima of the measured induced voltage. 

3. Change the angle of the ramp inclination to get the maximum value of the measured 

acceleration, a. This value corresponds to the acceleration of the body sliding on the 

vertical ramp, =90
o
.  Make the measurements for two magnets differing in the material on 

their surfaces. Why the accelerations measured for the two magnets are different although 

the tube is in the vertical position? Why the acceleration values measured differ from the 

expected value equal to the gravitational constantg? 

4. Perform a few measurements and write the acceleration values measured for the two 

magnets.  

 

C. Friction in sliding motion  

1. Using the program "spadek.vi" [Fall.vi] measure the accelerations of the magnets a, as a 

function of the ramp inclination angle, . Reduce the ramp inclination by the step of 

5
o
starting from 90

o
.  

2. Continue the measurements until the body on the ramp will stop sliding.  

3. Draw the values of a/g as a function of the ramp inclination angle  (assume that g=a, 

=90
o
). 

4. Compare the measured relation a/g( ) with the relation given by eq. (3). Change the values 

of static friction coefficient, , as long as it takes to get the theoretical relation closest to the 

experimental data, (the quality of the fit evaluate subjectively). 

5. Are you able to linearize equation (3) to be able to apply linear regression analysis for 

determination of ? 

6. Calculate the static friction coefficients, , for the two magnets. Calculate the critical 

angles.  
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D103. Coupled pendulums – small angle approximation 

 

Aim: Examination of oscillations of two coupled physical pendulums  

 examination of relation between the frequency of oscillations of a simple pendulum and its 

moment of inertia, determination of the centre of gravity.  

 examination of motion of two identical pendulums coupled through a spring  

 examination of two different pendulums coupled through a spring. 

 

Problems: 

 equation of motion for a physical pendulum, frequency of free oscillations, relation between the 

moment of inertia of a body and the frequency of its free oscillations. 

 normal oscillations, equations describing normal oscillations for a system of two coupled 

pendulums, sum of normal oscillations, beats.  

 

Experimental tools needed: 

 two physical pendulums to which weights can be attached. A spring for coupling the two 

pendulums.  

 potentiometers connected to each pendulum at the pivot points, that return voltage as a function of 

angular position of each pendulum. 

 interface permitting measurement of voltage on the potentiometer by a computer. 

 LabView environment through which it is possible to connect with the measuring interface and 

perform measurements. The voltage at particular potentiometers is read via the function Odczyt.vi 

or in the more advanced form – via the serial communication with the measuring interface.  

 

1. Free oscillations of physical pendulum. 
 

Most often studied is a mathematical pendulum which is a simplified version of a physical one in 

which the bob performing oscillations is assumed to be a point of mass and the rod (or cord) on which 

the bob swings is assumed to have no mass. In this experiment the physical pendulums are used, see Fig. 

1.  
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Figure.1. A physical pendulum used in the experiment. 

 

The difference between a physical and mathematical pendulums is that the physical one is a 

rigid body able to rotate about the pivot point which is other than the centre of gravity of this body. To 

describe its motion it is necessary to take into account the moment of inertia Iof the pendulum and 

position of its centre of gravity with respect to the pivot point. The Newton’s second law of motion for 

rotations takes the form: 

 

dt

Ld
M



       (1) 

 

where M is the net moment of force acting on the pendulum, while L is the moment of momentum  

related to the moment of force applied to the pendulum.  L is related to the moment of inertia I of the 

rotating body through the equation: 

 




IL         (2)

 

where  is the vector of angular velocity with the same direction and sense as M. The above equations 

can be applied to physical as well as mathematical pendulums. The difference appears in determination 
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of M. For both types of pendulum, the only source of the moment of force is the gravity. For the 

mathematical pendulum the moment of force is: 

  

)sin()sin(  mglmglFrM G 


     (3)

 

where m is the mass of the body and l is the distance from the pivot point or the length of the pendulum. 

The sign minus means that, similarly as for a spring, the moment of force acting on the pendulum and 

related to gravity is directed so that to counteract the displacements and return the pendulum towards the 

equilibrium position.  

In the physical pendulum, the gravitation force acting on each fragment of the rigid body is the 

same, while the distances between each fragment and the pivot point are different. Therefore, the 

moment of force acting on the pendulum must be determined as a net moment of all moments acting on 

infinitesimally small fragments miof the body. The net moment of force is equal to the sum of all 

component moments  

 

     sinsin)sin( DdmrgdmgrMdM iiiiig


    (4) 

 

where ri is the distance of mass dmi from the pivot point, D is the directing moment of the pendulum. 

Taking into account that 
dt

d
  , and assuming small amplitude , which permits assuming that sin() 

≈ , and combining equations (1), (2) and (4) we get the equation of motion for a single physical 

pendulum:  

 

0
2

2

 


I

D

dt

d
       (5)

 

Please note that the amplitude is the only parameter varying in time that is needed for description of motion 

of a given pendulum. The solution to the differential equation (5) takes the form: 

 

)cos( 00   t        (6) 
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where 
I

D p
0 is the frequency of free oscillations of the pendulum, 0 

is the amplitude that can be 

found from the angular frequency (
dt

d
) after having assumed appropriate initial conditions (note that 

angular frequency differs from the pendulum eigenfrequency).  is the initial phase of the oscillation.  

Determination of the moment of inertia of the pendulum which is a rod with holes, presented 

in Fig. 1, is not an easy task, however, in approximation we can neglect the holes and find I for a 

rectangular rod of the dimensions a, b and c. Moment of inertia Iś of such a rod is measured with respect 

to the axis of rotation passing through its centre of mass and parallel to the side c of the rod and can be 

found from the equation: 

 

  
 


2

2

2

2

22

0

22 )(
12

1
)(

a

a

b

b

c

pś bamdxdydzyxI       (7)

 

where is the density of the material of the rod. In our experiment the rod oscillates about the pivot point at a distance r 

from the centre of the rod mass. The centre of mass is in the middle of the uniform rod, so r can be 

measured and using the Steiner theorem the moment of inertia of the rod Ip with respect to the axis 

passing through the pivot point (black dot in Fig. 1). 

 

2

śpI I mr         (8) 

 

A cylinder weight can be attached to the rod at different sites. If it is attached, then also its moment of 

inertia should be added to the total moment of inertia of the pendulum, 

 

2 2

, gdzie

1
.

2

p w

w w w w w

I I I

I m R m d

 

 
      (9)

 

In the above equation for the total moment of inertia I of the rod with weight, mw is the mass of the  

cylinder, Rw is its radius, and dw is the distance between the pivot point and the centre of mass of the  

cylinder.  
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Tasks 

 Using the program provided, record the time dependence of the amplitude of one of the 

pendulums with the cylinder weight at the bottom end of the rod. Set the pendulum in motion with 

the maximum possible amplitude and let it stop. With the help of cursors read off the frequency f 

of the pendulum oscillations at different amplitudes α0andmake the plot of f(α0).Find out at 

which amplitude αgthe approximation of small amplitudes ensures the acceptable accuracy. The 

following measurements make at the selected or smaller amplitude ag. 

 Changing the positions of the cylinders on the rods, on one rod from bottom up and on the other 

from top down, find the frequencies of free oscillations of the pendulums as a function of dw. 

 Measure the dimensions of the rods, positions of the holes in which cylinders can be attached and 

the dimensions and mass of the cylinder weights. Knowing that the directing moment of the 

pendulum with a cylinder weight D is a sum of the directing moments of the rod and the cylinder, 

calculate the frequencies of free oscillations of the pendulum for three different positions of the 

weight and compare the results with experimental data.  

 

2. Normal oscillations. 
 

 

If the two pendulums are connected by a spring, in the way presented in Fig. 2, we get a 

system of two coupled pendulums. 

  

Figure 2. A system of two coupled pendulums.  

 

This system has two degrees of freedom which are the amplitudes of the two pendulums 1 and 2 (in 

Fig. 2 the angles have positive signs according to the convention assumed in Fig. 1). It should be 

remembered that the spring must be attached in such a way that it would be in equilibrium for the two 

pendulums in equilibrium.  The system is called a sympathetic pendulum and it behaves in the same way 

as a system of two balls connected through a spring with each other and with the neighbouring walls, 

which is the simplest model of two atoms linked by a bond inside a molecule or a crystal. Although the 

motion of a sympathetic pendulum is complex, it can always be described as a superposition of two 
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independent harmonic motions (because of the two degrees of freedom). These motions, known as the 

normal oscillations, are independent and involve simultaneous oscillations of both pendulums in one or 

the other type of motion. The normal oscillation is the one in which all coordinates (in our experiment 1 

and 2) change with the same frequency and with the same or exactly opposite phase. The equation describing the 

normal oscillations is: 

 

)cos(1   tA , )cos(2   tB .     (10) 

 

The normal oscillations have strictly defined frequency and amplitude. Before we find them, we 

have to define the equation of motion for the sympathetic pendulum, which is different from eq. (5) 

because of the presence of a spring. In the system of pendulums from Fig. 2, besides the gravitational 

force also the restoring force, acting in the horizontal direction, contributes to the moment of force M 

(4). The force depends on the state of the spring (extension/ contraction x) and the elasticity constant k, 

sF k x   . Let’s consider one of the two pendulums. A change in the length of the spring relative to its 

length at equilibrium depends on the amplitudes of the two pendulums in the following way: 

 

12 sinsin  ddx        (11) 

 

The moment of the restoring force is: 

 

2

1 2 1 1sin( ) (sin sin )cos
2

s sM dF kd


             (12) 

 

and the moment of the gravitation force according to eq.(4) is 

 

1sinGM mgr          (13)
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The net moment of force is thus equal to the sum of MS and MG. Taking into account the 

approximation of small amplitude, sin(sin(,cos(,cos(, we can 

derive the equations of motion for both pendulums, as we have done earlier. We get: 

 

2
21
0 1 22

( ) 0
d

H H
dt


            (14) 

2
22
0 2 12

( ) 0
d

H H
dt


            (15) 

 

The frequency of free oscillations 0 is assumed to be the same (the pendulums are loaded 

with the same weights), while 
2kd

H
I

 . Equations (14) and (15) describe the oscillations of 

both pendulums which can be decomposed into normal oscillations (10). In order to 

determine the frequencies and amplitudes of normal oscillations, the equation for 1 and 2 

(10) is substituted to (14) and (15) to get the set of equations 

 

   

   

2 2

0

2 2

0

sin 0

sin 0

H A HB t

HA H B t

       
 

        
 

     (16) 

 

This set of equations (16) must be satisfied for each moment, so  

 

 

 

2 2

0

2 2

0

0

0

H A HB

HA H B

    

     
      (17) 

 

Set (17) has a non-trivial solution when the determinant of the matrix of coefficients is zero. 

 

2 2

0

2 2

0

0
H H

H H

   


   
     (18) 

 

Equation (18) leads to a quadratic equation: 

 

4 2 2 4 2

0 02( ) 4 0H H              (19) 
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whose solutions are: 

 

01  
       (20)  
2

2 0 2H   
      (21) 

 

Substituting the frequencies (20) and (21) to equations (17) we realise that 

 

for 01     B1 = A1,          (22) 

for 2

2 0 2H      B2 = -A2     (23) 

 

Equation (22) means that if the two pendulums oscillate in the same frequency equal to the 

frequency of free oscillations, then the phases of their motions are the same and the 

amplitudes of their oscillations are the same. Equation (23) describes the situation when the 

frequencies of the pendulums oscillations are different from that of free oscillations, 

amplitudes of the two pendulums are the same but the phases are the opposite. As mentioned 

before, any oscillations of coupled pendulums can be described as a superposition of 

normal oscillations. Using equations (10), (22) and (23) we get 

 

)cos()cos( 2221111   tAtA           (24) 

 

)cos()cos( 2221112   tAtA           (25) 

 

The normal oscillations of pendulums can be obtained by choosing proper initial conditions. 

For the normal oscillations type I, eq. (22), the two pendulums should be set in motion with 

the same initial amplitudes. For the normal type II, eq.(23), the two pendulums should be set 

in motion with the same initial amplitudes but in the opposite directions.  

 

Tasks: 

 Using the available program, measure the time dependencies of two coupled 

pendulums of known frequencies of free oscillations, moments of inertia and directing 

moment of the pendulum, for a few different coupling constants determined by the 

distance between the spring and the axis of rotation. . 

 Read off the frequencies of normal oscillations of the sympathetic pendulum and 

compare with the calculated values. 

 In order to do this you have to determine experimentally the elasticity constant of the 

spring, k. You can do this with the use of a weight of a known mass, thread or a piece 

of wire for fastening of the weight to the spring and a ruler. 
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4. Beats . 
 

Any oscillation can be described knowing its initial conditions. Let’s assume that only one 

pendulum is set in motion with the initial amplitude of 1(0) = 0. Let at t =0, the initial 

phase be 1 = 2 = , 2=0, and the initial velocities of the two pendulums be zero, 

1

( 0)

0
t

d

dt 


 , 2

( 0)

0
t

d

dt 


 . Substituting these values to equations (24) and (25) gives: 

 

1 0 1 2(0) ,A A            (26) 

 

2 1 2(0) 0 ,A A          (27) 

 

Having added or subtracted equations (26) and (27) by sides, we get 0
1 2

2
A A


  . Finally, 

inset these values to equations (24) and (25), which gives the following relations: 

 

 0 1 2 1 2
1 1 2 0cos cos cos cos

2 2 2
t t

    
           (28)

 0 1 2 1 2
1 1 2 0cos cos sin t sin

2 2 2
t t t

    
           (29) 

 

Substituting  

1 2

2
rś

 
    , 1 2

mod
2

 
        (30) 

 

we get  

 

     1 0 mod modcos cos ( )cosśr rśt t A t t       ,   (31) 

 

The two pendulums oscillate with the same average frequency śr, and their amplitudes are 

modulated with the frequency mod, and their phases are the opposite. This phenomenon is 

called beats. The single cycle in which the maximum amplitude of one pendulum is passed to 

the other pendulum which goes from zero amplitude to its maximum amplitude and then the 

energy is transferred back to the first pendulum until it reaches the maximum amplitude 

again, is called a single beat. The time period of completion of this cycle is called the period 

of beats and its reciprocal is the frequency of beats.  
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Tasks 

 Using the available program, measure the time dependence of beats a system of two 

coupled pendulums after one of them has been put in motion.  

 With the help of cursors, find the frequency of beats and the average frequency of 

oscillations of the two pendulums.  

 Set the system of pendulums in motion so that they would perform the first and then 

the second normal oscillations. Record the time dependencies of the amplitudes of 

the two pendulums. With the use of the available program find the frequency of each 

normal oscillation.  

 Calculate the frequency of beats and the average frequency of oscillations of both 

pendulums using the measured frequencies of both normal modes. Compare the 

results.  

 

5. List of references. 
 

1.   Frank S. Crawford Jr. “Fale”, wyd.IIPWN, Warszawa1975 – available at the Faculty of 

Physics library. 

2.   Henryk Szydłowski “Pracownia Fizyczna”, Wyd.Nauk. PWN, Warszawa1994 – – 

available at the Faculty of Physics library. 

3.   Mirosław Bylicki “Wahadła sprzężone”-

http://www.phys.uni.torun.pl/~mirekb/ipf_zad_16.pdf 

4.   David Halliday, Robert Resnick I Jearl Walker “Podstawyfizyki”Wyd.Nauk. PWN, 

Warszawa 2003 – available at the Faculty of Physics library. 

http://www.phys.uni.torun.pl/~mirekb/ipf_zad_16.pdf
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D101. Properties of sound waves;  

Speed of sound and beats 
 

 

Aim: To write a measuring application for investigation of selected properties of sound waves: 

 measurement of speed of sound on the basis of the time of acoustic pulse propagation  

 investigation of the wave interference (beats) 

 

Problems: 

 The wave equation, interrelations between the frequency f, angular frequency , 

wavelength , wave velocity v, period T, wavenumber k, energy of acoustic wave, Fourier 

analysis. 

 The formula for the sum of sines: sin(+). 

 
1. Introduction 

 

The equation describing the plane wave of frequency f and wavelength , propagating in 

the direction x takes the form: 

 

y = A sin(t – kx),     (1) 

 

where y is the deviation from the equilibrium position, A is the amplitude of deviation,  = 2f is 

the angular frequency, k is the wavenumber (k = 2/). In reference to the sound wave, y h a s  a  

sense of a change in acoustic pressure. In this experiment, the sources of sound are two column 

loudspeakers connected to the computer sound card of a computer. Acoustic signal is recorded via a 

usual microphone connected to the same sound card. As the sound wave is plane it does not 

undergo polarization.  

Placing a microphone at a certain position (x = constant), we get an acoustic signal in the 

sinusoidal form: 

 

y = A sin(t – ),     (2)

 

where  = kx. 
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Tasks: 

1. Write a program for generation of tones, based on the sound card and a set of loudspeakers. 

The frequencies and amplitudes should be controlled independently for the left and right channel. 

2. Write a program for recording of sound by a microphone and sound card.  

3. Record exemplary courses of acoustic waves coming from one source. Optimize the mutual 

positions of the loudspeakers and the microphone and optimize the settings in Properties of 

recording in the operation system. . 

4. Comment: details on the sound generating and recording functions can be found in the section 

“Technical comments” given below. Start with tone generation, if you are satisfied with the result, add the 

function of recording. Both loops responsible for generation and recording of sound can be found in the same 

block diagram.  
 

2. Determination of sound speed from measurements of acoustic pulse 

propagation time  
 

The speed of sound can be determined by a more direct method. Assuming that sound 

propagates in air at the same speed, and making use of the definition of velocity in a uniform 

motion v=ds/dt, the speed of sound v can be found by generation of a short acoustic pulse (wave 

packet) and measurement of the time dt needed by the pulse to cover the distance ds  

 

 

 

A wave packet can be generated by multiplication of the sinusoidal wave by the bell-type function, 

e.g. a Gauss function, exp[-((t – t0)/t)
2
], where t0 is the position of the center and Δt is the width of 

the bell. 
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Tasks  

1. Use one loudspeaker and two microphones set apart at a distance  ds. 

2. Modify the generator so that it would generate a tone of a given frequency whose 

amplitude is modulated by a Gauss function. In this way a pulse is obtained. The pulse duration is 

described by Δt (half width or full width at half maximum (FWHM)). 

3. Record the acoustic signal from two microphones set at a distance ds. The image recorded 

should be made of two pulses whose maxima are shifted in time by dt. Use the function Trigger 

and Gate.vi to obtain a stable image of the pulses. Using the cursors, measure the time of pulse 

propagation dt in the Waveform Graph. 

4. Measure the time of pulse propagation for a few distances between the microphones.  Calculate 

the speed of sound from analysis of regression of the linear dependence ds(dt). 

 

3. Investigation of wave interference  
 

Waves coming from different sources, reaching simultaneously the same point is space 

undergo interference, which means that their momentary deviations. For two waves propagating in 

one direction, non-polarized or polarized in the same plane, we can write  

 

y = A1sin(1t – k1x) + A2sin(2t – k2x)    (6) 
 

If the frequencies of two interfering waves differ slightly, the phenomenon of beating takes 

place. This phenomenon heard as a modulation of the sound amplitude with the frequency equal 

to the difference between the frequencies of interfering waves. Neglecting the spatial term kx, we 

get: 

 

y = A[sin(1t) + sin(2t)] = 2Acos[½ (1 - 2)t] sin[½ (1 + 2)t],   (7) 

 

in which the slowly oscillating term cos[½(1  - 2)t] can be treated as modulation of the amplitude 

of faster oscillations of the angular frequency ½(1 + 2). 

Beats 

 
Time 
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The depth of modulation decreases if the interfering waves differ in amplitude. 

Beats  

 
Time

 

Although it is difficult to describe analytically the envelope of such beats, we can write the 

following equations: 

y = A1sin(1t) + A2sin(2t) 

= A1sin(1t) + A1sin(2t) + (A2 - A1) sin(2t) 

= 2A1cos[½ (1 - 2)t] sin[½ (1 + 2)t] + (A2 - A1) sin(2t).  (8) 

 
As follows, the interference of oscillations of similar frequencies can be expressed as deeply 

modulated oscillations of an intermediate frequency and oscillations of the component with highest 

amplitude. Unfortunately, this description does not fit the reality as the difference between the 

frequencies of these oscillations causes smoothing of the sharp fragments so that the envelope 

resembles a sinusoidal function of the frequency equal to the difference (1 - 2), and not to half 

of this difference.  

Working on this 

experiment we noted that the envelope of beats is rather well described by a combination of 

the two oscillating functions: 

 

)])cos[(]()(cos[ 21212
1 ctbtay        (9)

 

We leave the explanation of this observation to the inquiring students. In this experiment, you can 

determine the dependencies of parameters a, b, c on the ratio of amplitudes of the signals 

A1/A2. The values of these parameters you can get from manual fitting, e.g. by using slides in 

LabView. 

Please note that beating is observed only when the waves can interfere on a detector. They are 

bound to occur if the source of sound are loudspeakers and a small microphone is a detector. For 
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comparison, try to listen to the same sound through the headphones (different frequencies in the left 

and right channels) or after shifting the loudspeakers directly to your ears (left to the left ear and 

right to the right one). 

 

Task  

Place two column loudspeakers next to each other and a microphone in front of them, at a 

distance of 20-40 cm. Generate the sound of slightly different frequencies in both loudspeakers. 

Measure the signal from the microphone for different combinations of frequencies and amplitudes of 

the signals from both loudspeakers. Describe the obtained envelope by equation (7) o r (9). If you 

describe it by equation (9)try to interpret the parameters a, b, c in terms of the amplitudes of the 

component waves. The parameters of the component waves can be determined independently, by 

switching off individual columns.  
 

 
 

References  

1.   Henryk Szydłowski “ Pracownia Fizyczna”, Wyd. Nauk. PWN, Warszawa1994. 

2.   David Halliday, Robert Resnick and Jearl Walker “Podstawy fizyki” Wyd. Nauk. PWN, 

Warszawa 2003.
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Technical comments: 
 

1.   Because of the necessity of double channel (stereo) measurements in some measurements the 

microphones can be connected through the amplifier to the linear input of the sound card “line in” 

so that one of them works on the left channel, while the other with the right one.   For the tasks for 

which one microphone is sufficient, it can be connected to the microphone input, checking the 

settings “Właściwości nagrywania” (Properties of recording), see point 2.  

 

2.   Check the settings “Właściwości nagrywania” ( Properties of recording) in the system. Click 

twice the loudspeaker icon in the Windows tool bar. In the menu Options choose Properties and 

mark the volume of recording. Make sure that the box at linear input or microphone is marked, as 

needed. Set with a slide the volume of recording at least at the middle of the slide range.  

 

3. A few comments on sound generation with the sound card  

 The functions permitting sound generation are to be chosen from the following 

Functions/Graphics & Sound/Sound/Sound Output LabView palette, 

 To generate a tone, it is preferable to use the function Sine Waveform.vi. Apart from the 

frequency and amplitude of sinus, the function needs the specification of the sampling rate and 

the number of samples of which the generated signal is to be composed. These parameters are 

needed to generate the waveform type data in LabView. It is a special data type which contains 

besides the samples table also information on the digital-to-analog converter setup. When 

using a music card, the sampling rate should be set to 44100 samples/second. 

 The diagram of the program given below generates a monophonic tone of the pre-set amplitude 

and frequency. For some experiments, e.g. investigation of beats, it is necessary to generate a 

stereo signal. To do it, introduce the appropriate change in the cluster Sound Format of the 

function Sound Output Configure. Use two functions Sine Waveform.vi. Then build the array 

from both waveforms (function Build Array) and send it to the function generating the Sound 

Output Write.vi. 
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4.   Comments on sound recording with the use of sound card  

 

 The functions permitting sound generation are included in the following set: 

Functions/Graphics & Sound/Sound/Sound Input LabView palette, 

 The diagram of the program given below generates the stereo signal and displays the data in a 

graph. The value written in the box Number of Samples/ch in the function Sound Input 

Configure.vi determines the number of samples of the signal so the time length of the signal 

recorded by Sound Input Read.vi. When you increase this value, the time length of signal 

recording will extend. 
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5.   Modulation of tone amplitude; formation of a wavepacket.  

We are interested in generation of the function  y(t) = A(t)T(t)  where A(t) is the 

amplitude varying in time (Gauss function) and T(t) is the sine so the tone: 
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To get properly generated modulated function, it must by expressed as a Waveform. Start with 

using the function Sine Waveform.vi. Use the function Get Waveform Components to collect 

from the waveform only the array of function values. Then, make the array of the values of 

Gauss function of the same size as the array of sines (loop FOR + structure of Formula 

Node). The array obtained use for building a waveform by using Build Waveform. The two 

waveforms for the Gauss function and for sinus function can be multiplied. The resultant 

waveform can be sent to the sound generating function Sound Output Write.vi. 

The diagram of an exemplary VI realising the modulation of the sine function amplitude 

with a Gauss function is shown below.  

 
 

 
 

6. When fitting a curve to the beats signal make use of the possibility of changing parameters 

a, b, c by slide controls or similar controls, as it permits fast choice of correct values of these 

parameters. Try to generate a complete function with a fast oscillating term, by setting its 

frequency to the value obtained from the measurements and by changing only the amplitude 

of this fast component. 

 


